公式:
f(z) = 1 / (1 + exp(-z))
结果
f(z)' = f(z)(1 − f(z))
推导过程
f(z) = 1 / (1 + exp(-z)) -> exp(-z) = (1-f(z))/f(z)
f(z)' = (1 / (1 + exp(-z)))'
= ((1 + exp(-z))^-1)'
= (-1)*((1 + exp(-z))^-2)*(1 + exp(-z))'
= -((1 + exp(-z))^-2)*exp(-z)'
= -((1 + exp(-z))^-2)*(exp(z)^-1)'
= -((1 + exp(-z))^-2)*(-1)(exp(z)^-2)exp(z)
= (1 + exp(-z))^-2)*(exp(z)^-1)
= (f(z)^2)*exp(-z)
= (f(z)^2)*(1-f(z))/f(z)
= f(z)*(1-f(z))